
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: object-oriented programming

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Finished cell arrays, file input, file output
○ Finished prelim 2 material

● Today
○ Object-oriented programming

● Announcements
○ Project 5 due Monday 11/14
○ Prelim 2 next Thursday!

■ tutoring (sign up on CMS) Monday 11/7 - Wednesday 11/9
■ Review session 11/9 6:30 – 8pm in Thurston Hall room 203

○ Apply by November 14th if you would like to be a consultant for this class!

Prelim 2 topics

● 2-dimensional array (matrix)
● 3-dimensional array (e.g. color image data)
● Computing in type uint8
● Array (2-d, 3-d) algorithms/patterns: full array traverse, partial array traverse (e.g.,

rectangular subarray, triangular subarray)
● Characters and char arrays
● Linear search
● Cell array
● Vectorized code
● File input/output

Objects and classes

● A class is a data specification
○ Specify the properties of some class of things

● An object is a concrete instance of the class

When to use objects and Object-Oriented Programming (OOP)?

Think about rectangles…

Up til now we’ve drawn a bunch of
rectangles using drawRect

But if we have an application where we
need lots of rectangles and to be able to
apply different functions to these
rectangles… use OOP!hold on

DrawRect(1,2,1,2, 'g')
DrawRect(3,4,1,1, 'g')
DrawRect(1.5,2,1.5,1, 'k')
DrawRect(2,5,1.5,1, 'm')
DrawRect(2.25,3.5,1,1.5, 'c')
hold off

rect1 = rectangle(1, 1, 4, 4)
rect2 = rectangle(2, 2, 5, 6);
A = rect1.getArea();
P = rect1.getPerimeter();
rect1.drawRect('g')
rect3 = rect1.overlap(rect2);

Think about rectangles…

Up til now we’ve drawn a bunch of
rectangles using drawRect

But if we have an application where we
need lots of rectangles and to be able to
apply different functions to these
rectangles… use OOP!hold on

DrawRect(1,2,1,2, 'g')
DrawRect(3,4,1,1, 'g')
DrawRect(1.5,2,1.5,1, 'k')
DrawRect(2,5,1.5,1, 'm')
DrawRect(2.25,3.5,1,1.5, 'c')
hold off

rect1 = rectangle(1, 1, 4, 4)
rect2 = rectangle(2, 2, 5, 6);
A = rect1.getArea();
P = rect1.getPerimeter();
rect1.drawRect('g')
rect3 = rect1.overlap(rect2);

OOP focuses on
creating object
with methods
(functions) that act
on those object.

When to use objects and Object-Oriented Programming (OOP)?

Class Interval

An interval has two properties
● left, right

Actions—methods— of an interval
include
● Scale: make the interval

larger or smaller
● Shift: move the interval
● Check if two intervals overlap
● …

classdef Interval < handle

properties
left
right

end

methods
function scale(self, f)

…
end

function shift(self, f)
…

end

function Inter = overlap(self, f)
…

end
end

end
We’re missing a few things. Let’s
talk about these class definitions in
a little more detail!

What’s in a classdef?
classdef classname < handle

properties
prop1
...

end

methods
function constructor

...
end

function method1
...

end

...
end

end

begins with the keyword classdef:
classdef classname < handle

Use keyword end for classdef, properties,
methods, function.

Second is the properties that define the class

Until we get to subclasses,
always use handle. handle is
a class that creates references
to objects.

Third is the methods that act on objects of this
class.

First method must be the constructor (the
function used to construct objects)

What’s in a classdef?
classdef classname < handle

properties
prop1
...

end

methods
function constructor

...
end

function method1
...

end

...
end

end

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

What’s in a classdef? classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Other than the constructor,
each method’s first parameter
must be the handle of the
object itself.

Call it self.

constructor returns handle to
a newly allocated class object

Properties
that define
an interval
object

Constructor
used to create
an interval
object

Method
(function) that
acts on interval
objects

The file on the right must be
called Interval.m

The constructor method classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

To create an Interval object, use its class name
as a function call:

I = Interval(3,7);

Constructor, the method with the same name
as the class, has the following jobs:

● Automatically compute the handle of the
new object; handle is returned as output
param

● Execute the function code (to assign
values to the properties)

Given class Interval (in file Interval.m)

% Create 2 Intervals, call them A, B
A = Interval(2, 4.5);
B = Interval(-3, 1);

% Assign a new right end point
A.right = 14;

% Halve the width of A (scale by 0.5)
A.scale(0.5);

% See the result
disp(A.right) % display 8
disp(A) % display interval(2,8)
disp(B) % display interval(-3,1)

Important observations:
● Each object is

referenced by a name
● Two objects of the same

class have the same
properties

○ The values in
those properties
may be different
though

● To access a property
value, use the dot
notation

● To access a method, use
the dot notation

● Changing property
values of one object
doesn’t affect property
values of a distinct
object

handles
A handle is a reference to a variable. In other words, when a variable holds a
handle, it actually holds a reference to the object.

2

4.5

I = Interval(2, 4.5);

left

right

I stores a handle to the
object, not the object itself.

When I call this constructor
function, MATLAB allocates
space in memory for this
object

173.24

interval()

scale()

I 173.24

handles
A handle is a reference to a variable. In other words, when a variable holds a
handle, it actually holds a reference to the object.

Why do we care? Because the object and a reference to that object act
differently.

% a and b will store numbers.
a = 10;
b = a;
b = 15;
disp(b) % will display 15
disp(a) % will display 10

% I1 and I2 will store handles
% pointing to the same object
I1 = Interval(1,5);
I2 = I1;
I2.right = 6;
disp(I2) % interval with

left=1
right=6

disp(I1) % interval with
left=1
right=6

Methods other than the
constructor

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Use the scale function with the object we are
acting on before the function (and use dot
notation):

I = Interval(0,5);
I.scale(2);
disp(I) % Interval with properties

left = 0
right = 10

Methods other than the
constructor

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

I = Interval(0,5);
I.scale(2);
disp(I)

The object handle goes
before the function call.

Inputs other than
the first input show
up in parenthesis
after the function
name

objHandle.methodName(inputParam2, inputParam3, ..., inputParamN)

More sample code

I1 = Interval(0, 2);

I2 = Interval(0, 2);

I3 = I1;

I3.scale(2)

disp(I2.left)

disp(I2.right)

disp(I1.left)

disp(I1.right)

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

% displays 0

% displays 2

% displays 0

% displays 4

OOP Vocab review

● Class: the template that specifies a custom type; includes the list of properties
and methods of the type

● Object: an instance of the class
● Property: A variable defined in a class
● Method: a function defined in a class; it has access to the properties of the

class
○ Constructor: special method that returns the handle to the newly

allocated object
● Handle: unique identifier of an object generated by MATLAB; also called

reference or address
● Object-oriented programming: a type of programming that focuses on creating

object and writing methods that act on those objects

